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The process of levitation melting of metals is examined analytically and numerically 
for the case of axisymmetric toroidal high-frequency currents. The governing equa- 
tions for the mean-velocity field and associated free-surface shape are derived under 
the assumption of low magnetic Reynolds number and the neglect of thermal effects. 
The form of the solution for high Reynolds number is discussed in general, and 
particularized to the case of high surface tension, in which limit a perturbation 
analysis about a spherical shape is presented. Finite-difference techniques are used 
to solve the Navier-Stokes equations in the sphere, and the surface perturbation is 
calculated. The asymptotic behaviour of the potential vorticity is illustrated by the 
numerical experiments. 

0. Introduction 
When a conductor is placed in an alternating, non-uniform magnetic field 9?(Beint), 

where 9 denotes the real part, eddy currents 9?(jeint) are induced in it. The associated 
Lorentz force density will in general have both a steady component and one fluctuating 
with frequency 2Q. If the field is sufficiently strong with respect to gravity levitation 
may occur, and a time-averaged equilibrium will be reached when the region V 
occupied by the conductor is such that 

where p is the density of the conductor, g is the gravitational acceleration and * 
denotes the complex conjugate. For a solid conductor, henceforth aasumed to be 
a metal, B obeys a diffusion equation 

iQB = AV2B, (0.2) 

where h is the magnetic diffusivity, and thus 

where ,u is the magnetic permeability, B, is a typical value of B, and L its length 
scale of variation inside V. Equation (0.1) therefore implies 
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where a is a length scale of V. The field strength required can thus be reduced by 
increasing Q. Eventually, as is well known, an asymptotic state is reached in which 
L2 N h/Q,  and the field is confined to a skin layer near the surface. 

Inevitably associated with the Lorentz force is an Ohmic heating rate 

(in the asymptotic state). If Q is sufficiently large, therefore, the levitated metal will 
begin to melt. This process is known as ‘levitation melting’, or ‘the electromagnetic 
crucible ’. 

Levitation melting of metals was first suggested by Muck ( 1  923) in a German 
patent, but it was some years later that the first experimental work was published by 
Okress et al. (1952). Since then, many suitable levitation coils have been found by 
Polonis (Polonis & Pam 1954) and others, extensive references to which are given 
by Peifer (1965). The greatest interest in levitation techniques has been shown 
by metallurgists, for whom the advantages of non-contamination from the crucible, 
efficient stirring and rapidity of melting make them superior to more-conventional 
crucible melting, when a pure homogeneous melt is required. 

Once the metal has melted a number of changes occur. Firstly, the fluid surface is 
free to adjust according to the stresses upon it, and the suspended blob of fluid will 
adopt a shape which is unknown a priori. Secondly, we observe that the Lorentz 
force is in general rotational and so necessarily drives rotational fluid motions, the 
Reynolds number for which is large ( -  lo4 for a free-fall velocity, a = 0.01 m and a 
kinematic viscosity - 106m2/s). Finally there is the possibility of magnetic induction 
bending the field lines in V. 

The greatest difficulty facing levitation melting is the maintenance of stability of 
the suspended blob. The possible instabilities are essentially either global, or local to 
the surface. The global instabilities, which cause the metal to move as a whole, must 
be prevented by carefully choosing the external current distribution that generates 
the supporting field so that the blob is close to a local field minimum. The simplest 
method of ensuring this, used in all of the coil designs cited above, is to arrange a 
basket of axisymmetric coils wound in the same sense with one or two counter- 
windings at  the top to provide a ‘ crucible lid’. The disadvantage of an axisymmetric 
design is that along the axis of symmetry the Lorentz force is zero, and hence we must 
rely on surface tension to provide the necessary support against hydrostatic pressure 
there. As a result, the blob tends in practice to adopt a conical shape with its apex 
pointing downwards. Not more than about 50 g of liquid has been levitated in this 
manner, greater masses fending to drip down the central axis. This dripping tendency 
is an example of a surface instability. Harris & Stephen (1975) have examined other 
surface distortions, using sodium in an oil of slightly lower density, but it is not clear 
that the oil motions are negligible, and thus direct comparison is difficult. Sagardia 
(1977) has levitated 1 kg of aluminium by means of multifrequency non-axisymmetric 
coils. There being no time-averaged interaction between different frequencies, it is 
possible to add the magnetic pressures due to each frequency. Thus along the axis of 
one set of coils, others may be called upon to give support. 
In this paper we attempt an analytical and numerical study of the levitation 

. 
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FIQURE 1. General co-ordinate system. 

phenomenon with the aim of understanding the relation between the external coil 
arrangement, the adopted surface shape and the internal fluid flow. We confine our- 
selves to the axisymmetric, single-frequency case, which is more amenable to analysis. 
We ignore all thermal effects, assuming an equilibrium temperature has been reached, 
or that variations with temperature (of viscosity, say) are slow. Buoyancy forces are 
proportional to density differences and are therefore negligible compared with the 
Lorentz force, which,. by ( O . l ) ,  is proportional to the total density. We are also going 
to  assume that the flow is essentially laminar, by which we mean that turbulent 
effects (if any) can be represented by an effective ‘eddy viscosity’ to replace the 
molecular viscosity. This is our most severe assumption, as laboratory liquid-metal 
flows are usually turbulent, and this can only be partially modelled by an eddy vis- 
cosity. Nevertheless, for analytical progress, some such assumption must be made. 

In $ I we derive the magnetic field inside the metal. In $$2 and 3 we discuss the 
flow for a general surface, and particularize in $4 to the limit of high surface tension. 
In  $ 5 we describe the numerical experiments performed in this limit. 

1. The magnetic field 
We assume a given axisymmetric toroidal current distribution W(joemt) surround- 

ing a volume V of liquid metal bounded by a surface s, whose shape is known. We 
define locally to the surface an orthogonal co-ordinate system (n, s,#) as in figure 1, 
where $ is the azimuthal angle and n, s are the normal and tangential co-ordinates 
on S. 

2-2 
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The poloidal magnetic field in V ,  W( BeiRt), obeys the induction equation 

iQB = V A  (UA B)+hV2B, (1.1) 

where u is the fluid velocity and h the magnetic diffusivity. The magnetic Reynolds 
number R, = U,L/h, where U, and L are scales of velocity and field variation, we 
take to be small. This assumption is certainly valid for high-enough frequency, since 
not only does L+O as Q-*, but also, as we shall see, U,+O as Q-4. The range of 
consistency of this approximation will be checked later. It results in the neglect of 
the fluidity of the metal, and we are left with the standard problem of field penetration 
into a solid conductor. If we write B = V A  (0, 0, A )  ( 1 . 1 )  becomes 

As Q+oo we obtain the asymptotic solution by taking a/an alas 

A = 26B,(s) cxp [ (1 + i) $1 + 0(d2), 

where 6 = (h/2Q)* is the skin depth. B,(s) is obtained by matching with the external 
problem 

VAB =,uojo, V.B = 0, B+O as IxI+oo. (1.4) 

Equation (1.4), together with the boundary condition Bfl = O(6) on S, can be solved 
for B, by means of an integral equation over S involving a Greens function. 

Then inside V, to lowest order in 8, we have 

the current 

and the time-averaged Lorentz force per unit mass 

F = #W(jnB*) = i - # ~ B 8 ~ 2 , 6 9 ~ 8 ~ ] , 0 ) ~ ,  

where p is the (constant) fluid density and 9 denotes the imaginary part. Now if the 
applied currents are single-phased (i.e. if jo = j , , e i Z ,  j , ,  real, CL. real and constant) then 
by a suitable choice of time origin we may take B, to be real, and thus 9{B,  aB$/88) = 
O(6).  If we assume this to be the case (as such currents are invariably used in practice) 
we can express F and G = V A  F to  leading order as 
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as given by Sneyd (1979). Should the currents be multiphased, however, then if we 
write B, = B,, + iB,, with Bar, B,, real there exists an additional tangential force 

(1.10) 

We shall return to this point later, but for the moment confine ourselves to con- 
sidering the fluid motions driven by F inside V ,  still regarding the surface S as fixed. 

2. The velocity field 
We are going to seek a steady laminar axisymmetric poloidal velocity field. Sneyd 

(1979) has shown that only for infinite cylinders is the rotational part of the Lorentz 
force, and hence the velocity field, truly steady. We must therefore show the time- 
dependent part of the velocity to be negligible. 

The inviscid vorticity equation for o = VA u is 

- am = V A ( U A ~ ) + G + G ,  
at 

where G is the contribution from the fluctuating Lorentz force and is of the same 
order M G. We define a suitable large scale time-average- and write o(x, t )  = 
o(x) + o’, where 0’ = 0. 

Now the assumption of low magnetic Reynolds number is equivalent to stating 
a/&! B u .V. The fluctuating part of (2.1) then reduces to 

- 

or of N G/Q. The steady part of (2.1) is 

V A  ( G A G ) + V A  ( u ’ A ~ ‘ ) + G  = 0. 

Now IVA (u’ A o‘)l w’2 C;r 
N - N -  

IGl G Q2- 

We therefore see the effects of fluctuation are negligible provided G/Q2 < 1, or from 
(1.9) and (0.1)) g/Q2 < 8. This is equivalent to saying that the free-fall distance over 
one period must be considerably smaller than the scale of field variation. For R as 
low as 100 Hz. g / K P  - 0.05 for A = 0.1 m2/s, g = 10 m/s2. The addition of small 
viscosity, though important to the flow as a whole, does not affect the above analysis. 
It is thus correct to suppose the laminar velocity field to  be steady, as suggested by 
Moffatt (1965). 

The velocity u(x) and pressure p(x) thus obey the steady, incompressible Navier- 
Stokes equations in V 

(2.5) 

v .u  = 0, (2.6) 

u .VU = - V(p/p + gz) + F + vV%, 

where v is the kinematic viscosity and z a vertical co-ordinate. The associated vor- 
ticity equation is 

VA(UACO)+G+VV~W = 0. (2.7) 
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The boundary conditions on the stationary free surface S are 

where 

u,ni = 0, sieijnj = 0, p = yK,  (2.8), (2.9), (2.10) 

is the rate-of-strain tensor, ni, si the unit normal and tangent vectors, y the surface 
tension, and K the curvature of the surface, most easily defined as ani/axi. 

For this high-Reynolds-number flow we have neglected the normal viscous stress 
in (2.10) in favour of the pressure. Some discussion, however, is required as to the 
applicability of the tangential stress-free condition (2.9) to liquid metals. Some metals, 
notably mercury and aluminium are invariably found in air with a solid oxide coating 
or 'skin'. There is thus some justification for using here instead a no-slip condition 
as used by Moffatt (1977) and Sneyd (1979). However, these works are mainly directed 
towards the problem of electromagnetic stirring of a cylindrical column of cooling 
metal, in which the melt is deliberately allowed to solidify on the outside. In our 
case the stronger fields required by the levitation constraint (0.1) would cause larger 
viscous stresses on a solid surface, which are likely to break up any such skin. Indeed, 
Okress et al. (1952) record seeing islands of film floating on levitated aluminium. If 
the levitation occurs in an inert atmosphere the problem does not arise. 

If we write u = (un, us, 0), o = (0, 0, w )  then (2.8) and (2.9) can be rewritten 

un = 0, w = 2cus, (2.11) 

where c is the one-dimensional curvature of the surface intersected with an axial 
plane, related to K by the formula 

(2.12) 

where R is the distance from the axis of symmetry. 
We intend to eliminate p from the problem by dealing with the vorticity equation. 

We therefore re-express (2.10) as follows. Integrating (2.5) along a surface streamline 
we obtain, using (2.8) and (2.10) 

(2.13) 

where KO is the curvature at the bottom (s = 0). It should be noted with reference to 
(1.10) that were the external currents double-phased there would exist another term 
in (2.13) of the same order as the gravitational one, which could be important in 
determining the surface shape. 

The importance of surface tension can be seen by evaluating (2.13) at the top of the 
blob. If we ignore the viscous term we obtain, as given by Polonis (1954) 

2 (KO - Kt)  = gh, 
P 

(2.14) 

where Kt is the curvature at  the top, and h the total height. This limits the total 
amount of metal levitatable by an axisymmetric device of the type we are considering, 
aa the thinning required for high curvature a t  the bottom will probably render the 
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system prone to surface tension instabilities, or alternatively increase the required 
height of the levitation apparatus to an inconvenient level. 

For agiven surface S, (2.6),  (2.6) with (2.1 1 )  are sufficient fo determine u throughout 
V .  Equation (2.13) is an additional constraint that the surface must satisfy for 
equilibrium. 

3. Scaling 
Let us formally define 

a = (g)' 
where v is the volume of V .  We expect three distinct regions of the flow: a core region 
of length scale a, free from rotational forces; a magnetic skin layer of thickness as,, 
in which the Lorentz force acts, and thirdly, a weak viscous boundary layer of thick- 
ness as,, where we have written 

Re = Uoa/v, 8, = Re-h, 8m = 8/a. ( 3 4  

Re is of course the Reynolds number for the core flow. 
The viscous boundary layer at a free surface plays a minor role. Across it there is 

an O( 1 )  change in o and e,,, but the velocity is approximately constant. As a result, 
there is negligible energy dissipation in this layer. 

Across the magnetic layer there is a jump in stress known as the magnetic pressure. 
If 8, 8, then this indeed provides a jump in the fluid pressure. If 8m $8, then it 
is the viscous stress that jumps and there is a low-Reynolds-number region of thick- 
ness asrn within the viscous layer. This must be taken into account when scaling the 
normal derivative in the surface viscous term in (2.13). 

We represent the levitation constraint (0.1) by 

where a is an O( 1 )  constant dependent only on the geometry of the set-up. We define 
a Weber number as a measure of surface tension 

W=- Y 
P!P2' 

(3.4) 

The rate of energy dissipation can be obtained from (2.5) 

S y u . F d V  = 2v s, ei,eijdV. (3.5) 

Now since F has only a normal component and in the magnetic layer u, - U, Sm, this 
suggests the scaling 

This estimate for the velocity magnitude has also been obtained by Sneyd & 
Moffatt (1982) by means of a streamline integral. It should be noted, however, that 
this estimate may be too large as the integral on the left-hand side of (3.5) could be 
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small. Equation (3.6) is stating that the viscous and magnetic forces are of the same 
magnitude locally, whereas (3.6) requires only an average equality. 

If we non-dimensionalize u, B, x, with respect to U,, B, and a respectively, then 
from (2.7) we obtain 

1 
a m  

ReVA(uAw)+-G+V2w = 0. (3.7) 

Equation (2.13) becomes in non-dimensional form 

where y = min ( a m ,  6,) n is an O( 1) co-ordinate on the surface (inside both boundary 
layers). Equation (2.6) and (2.11) remain unchanged. 

8,, the integral term is smaller by a factor of 8, than the u2 term. 
If 6m 4 S,, the integral term in 0(1) and in fact becomes the magnetic pressure 
4.B:. Thus in either of these limits, to leading order it would be correct to write 

(3.9) 

which is a simple physical balance of pressure forces. Equation (3.9) can be shown to 
be uniformly valid over variations in the ratio of the boundary layer thicknemes, 
provided the velocity u, is measured outside both layers. Equation (3.8) does not 
involve any boundary-layer approximations, and may be of more use in numerical 
work. 

We have thus formulated the problem in terms of three dimensionless parameters: 
Re, 6, and W .  These parameters, repeated here, 

In (3.8), if 6 ,  

W(K - KO) +z + +a Re6,uZ + Bag = O(am, a,), 

(3.10) 

may in principle be varied independently, by suitable variation of a, and two fluid 
properties, say p and v. Of course not all points in parameter space will be physically 
accessible, and we now estimate these parameters for a realistic case. 

Order-of-magnitude values of the relevant physical constants for liquid metals are 

y = 1 N/m, h = 0.1 mS/s, p = lo4 kg/ma, (3.11) 

and thus if we take $2 = 108 Hz, a = 0.01 m and use a mlecular viscosity v = 10- m2/s, 
th? parameters become 

W = 0.1, Sm = 0.02, Re = 2 x 105a. (3.12) 

Now for self-consistency of the scaling we cannot have one term in (3.8) out- 

Ream 5 max (1, W). (3.13) 

This constraint on the validity of our scaling is satisfied in either of the limits of 
high frequency (Bm+O) and of high surface tension ( W + ~ O ) ,  but not in the limit of 
high Reynolds number (Re +- 00). In  either of the two former limits the surface shape 
may be determined independently of the fluid velocity, which greatly simplifies the 
problem. Now (3.13) is clearly not wtisfied by the parameters in (3.12). It becomes so, 

balancing all the others. We require therefore 



Magnetic levitation of liquid metals 35 

however, not only if we consider smaller blobs of fluid or much higher frequencies, but 
also if we replace the molecular viscosity by a larger turbulent ‘eddy viscosity’ as 
may be applicable in certain flow regimes. 

We are now in a position to examine more carefully the assumption in $1 of low 
magnetic Reynolds number. In  (1.1) 

J V A  (UA B)J &,UoBo/S ga3 
N N a-8& 

lAV2Bl AB,/P V A  
(3.14) 

and thus with the values of (3.11) the effective magnetic Reynolds number, R ,  eft = 
10-3a. This is an order of 6, smaller than R, as defined previously since u and B are 
almost parallel in the region where B =I= 0. We thus see that even in the unfavourable 
parameter range the assumption R ,  elf < 1 is eminently reasonable. 

We conclude this section with some general remarks about the form of the velocity 
field, assuming (3.13) to hold, i.e. that the viscous forces are locally of the same 
magnitude as the Lorentz forces in the magnetic boundary layer. 

The velocity outside both boundary layers has a relatively simple structure. 
Batchelor (1956) has shown that inside any closed streamline, the potential vorticity 
w/R is constant. This, however, does not fully determine the shape of the velocity 
field in the core region as we cannot rule out the possibility of more than one region 
of closed streamlines existing. Indeed, this we find often to be the case. 

Now outside the viscous layer (3.7) reduces to 

u.V - = O(Re-l), (3 (3.15) 

which implies w/R is constant along streamlines. This standard result for axi- 
symmetric, high-Reynolds-number flows is illustrated by the numerical experiments 
for the sphere in $6. If we introduce a stream function Y such that u = V A  (0, 0, Y I R )  
and Y = 0 on n = 0 then we may write 

(3.16) 

where f is some function. In  principle, f is determined by the streamline integrals 

(3.17) 

Now (3.16) is incompatible, in general, with the stress-free condition in (2.11), and 
we therefore perceive the need of a viscous layer near the surface. This should be 
contrasted with the cylindrical problem considered by Jones, Moore & Weiss (1976) 
in their work on axisymmetric convection, in which the condition of vanishing stress 
is identical with one of vanishing vorticity, due to the straightness of the boundaries. 

4. The high-surface-tension limit 
As TP-tco in (3.8) it is evident that K+K, ,  and hence that the blob becomes 

almost spherical. In this limit, therefore, considerable progress can be made by means 
of a perturbation expansion. Unfortunately, except for very small drops (a - 1 mm), 
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for which some of our other assumptions become tenuous (for instance 8, < 1), this 
limit is not physically realized. Nevertheless, it is of value to consider it for two 
reasons. Firstly, since the perturbation is regular, we may expect it to remain quali- 
tatively correct for W = O(l) ,  giving us a fair idea of the shape adopted by larger 
drops. But most relevantly, it is invaluable to have a way of examining the behaviour 
of the velocity field in various ranges of the parameters Re and 8, for a given shape. 

We use spherical polar co-ordinates (r,  8,$) and define 

Then (3.8) can be re-expressed in the form 

K(0)  -KO = Ehl(0) + .'hz(O) + . . . , 
where h,(B) are determinable functions once the d-1  problem has been solved. We 
represent the almost-spherical surface by 

r = l + ~ R ~ ( e ) + s ~ R ~ ( e ) + . . . ,  (4.3) 

(4.4) 

and then the curvature K = an,/ax, is given by 

K = ~ - I ~ R ~ - c ~ { L R ~ - ~ R , L R , + ~ R ' ~ ) +  ... , 
where L is the first Legendre operator defined by 

If we now write KO = K ,  + eKol + e2K,,, + . . . then equating coefficients of C gives 

K ,  = 2 ,  

LR1+ KO1 = - hl(e) - hf, (4.6) 

(4.7) LR2 + KO2 = - h2(8) + 2R1 LRl - 2R? - g, 
and so on. We thus obtain second-order differential equations for the shape per- 
turbations. One boundary condition comes from mass conservation : 

jr3 I sin ede = constant, 
S 

Since the operator L contains a constant multiplier, we can absorb the constants 
Koi into Ri and regard (4.9) as determining them. 

Now Lx = 0 has a general solution 

(4.10) 

and for regularity at 8 = 0 , ~  we must require D = 0 in any solution. This leads to a 
solvability constraint on hi. For if x is regular then since L is self-adjoint 

(LX, cos e> = (x, L coa e> = 0, (4.11) 
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where (4.12) 

We thus have at ith order a secularity condition 

(h:, cos 0) = 0, (4.13) 

which is requiring that the system should be in bulk equilibrium to (i- 1)th order. 
This connection derives from the physically obvious fact that surface tension provides 
no net force on a closed isolated blob of fluid. The coefficients of the free solutions 
Ci cose in (4.10) correspond to a shift in position of the entire blob through a distance 
Ci ei, and must be chosen so that equilibrium between gravity and the levitation force 
is maintained to all orders. 
If we write B = VA (0 ,  0, A ) ,  then in the absence of the sphere we may expand 

m 
A = 2 AnoPP~(COS8), (4.14) 

where PA is an associated Legendre function, and the coefficients A,, may be calcula- 
ted in terms of the known external current distribution. For a current loop at  r = rot 
8 = O,, for example, 

n= 1 

(4.15) 

and we may superpose such fields as required. In  the presence of the sphere the field 
is given by 

m 

n= 1 
A = x A n o ( r n - S l )  PA. (4.16) 

If we now perturb the sphere and expand A = A, + € A ,  + ... then A, is given by 
(4.16). Ai may be expanded 

4, 

A, = x Aniv++1)P;, 
n=l  

and the boundary condition that A vanishes on S implies 

(4.17) 

(4.18) 

and so on. In the numerical experiments to follow we do not calculate more than the 
first perturbation, and so from now on we ignore terms of order less than 6. Then from 
(1.3) and (4.18) 

sinBR,(B)B,(B) PA(cosB)dO. (4.19) 

The perturbed field now being known, we may calculate the magnetic pressure on the 
perturbed surface. The requirement that the levitation force is unchanged to order 6 
then gives lo' {B; [2R1 Sin e cos e + R; sinz 01 + 2B,B8, Sin  e cos el ae = 0. (4.20) 

This relation fixes the value of the coefficient Cl and thus completes the determination 
of R,. 
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To first order, we solve the above perturbation problem numerically in three steps: 
(i) find the surface field on a conducting sphere with the given external current 

(ii) solve the Navier-Stokes equations in the sphere driven by the associated 

(iii) derive the corresponding surface perturbation. 
In 8 6 we outline the numerical techniques used. 

distribution of sufficient strength to support it; 

Lorentz force; 

5. Numerical methods 

u = V A (0, 0, Y / r  sin O ) ,  and allowing for time dependence, in the form 
We rewrite (2.6), (3.7) by introducing a stream function Y such that 

(5.1) 
1 r-1 Re a(Y, u / r  sin 0 )  

D2(ur sin 0 )  + - exp - au 1 
at rain0 am ( Sm ) G(e)+r a(r,O) 
-=- 

and the last term in (5.1) is a Jacobian. We wish to solve (5.1), (5.2) in the sphere 
r = 1, with boundary conditions 

Y = 0, 

usin0 = -2- 
ay ] on r = l  
ar * 

Various sophisticated techniques have been developed for the solution of this type 
of equation (Weir 1976; Jones et al. 1976), but owing to the relative simplicity of the 
problem we use a naive second-order finite-difference scheme. We define a regular 
circular grid and time-step towards equilibrium using a Dufort-Fraenkel centred 
scheme. Each time step we use (5.1) to find the new vorticity distribution inside the 
sphere. We then solve (5.2) with (5.3) by relaxation for the new stream function, and 
finally use (5.4) to find the surface vorticity. Equilibrium is defined to be when 
max {u-1 h / a t }  < e* for some suitably small e*. Because of the boundary-layer 
structure of the solution, computational efficiency suggests that more points should 
be placed near the surface. It is a simple matter to  halve the mesh spacing above a 
given radius without loss of accuracy. 

The scheme sketched above can be tested by inputting an artificial forcing G, for 
which there exists an analytic solution for (Y,u). Varying the step lengths then 
demonstrates that the scheme is indeed second-order and converges as the step length 
tends to zero. 

To find the actual forcing we use a truncated series of associated Legendre functions. 
The truncation length was chosen such that the proportional change in the surface 
field on increasing the number of included terms was significantly less than the 
second-order errors of the finite-difference scheme. At each grid point on the surface, 
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(4.16), together with the recurrence relation 

(2n+1)cos8P; = nPk+,+(n+1)Pk-,, 

Pi = 0, Pi = sine, 

was used to obtain the value of B,. The results were checked against a more-general 
integral-equation method. The function G(0) is then found from B,(B) by differences. 

Once the flow field has been found, the surface perturbation can be calculated by 
inverting the differential operator L in (4.6). If we write 

R, = - *q,,( i - cos e) + R,(o) cos 0 + s,, (5.6) 

LS, = s,(o) = s;(o) = 0. (5.7) 

then we are left with the problem 

If we now express the operator L in difference form it is possible to ‘shoot’ from 
0 = 0 to 0 = 7~ without picking up the logarithmically singular solution. The accuracy 
can be tested by shooting backwards with the obtained solution. Application of the 
boundary conditions (4 .9)  and (4.20) then determines the constants R,(O) and KO,, 
and defines the surface perturbation uniquely. 

In  0 6 we describe the solutions obtained by the above methods. 

6. Numerical results 
Solutions have been obtained for various coil configurations and values of Re and 

6,. Those presented here pertain to the fields shown in figure. 2. The ‘single-loop’ 
configuration has the numerical advantage of structural simplicity, but in practice 
a blob levitated by such a device is unstable to vertical oscillations. The ‘basket’ 
design, with the characteristic counterwound ‘lid’, is a closer model of a realistic 
levitation device. 

The driving function G(0)  changes sign at extrema of the surface field B,, and is 
therefore quite complex in general. As a result, at  low Reynolds numbers many gyres 
may form, but as Re is increased for fixed S,, it is found that one dominant gyre 
emerges, swallowing up all but a small remnant near the bottom. This is not sur- 
prising since for high Reynolds number the Lorentz force appears only in the stream- 
line integral of (3.17), and thus its local structure is less important. 

For the single-loop field, figure 3 describes the solution for Re = 400, 6, = 0.05. 
The streamlines (right) are plotted alongside the contours of w/R (left) for comparison. 
In each case 15 contours are drawn between the maximum and minimum values, and 
thus the weak gyre at  the bottom of the fluid has not shown up on the streamline 
diagram. It is evident from figure 3 firstly that outside both boundary layers there is 
a plateau of potential vorticity, and secondly, away from this plateau, that wlR is 
approximately constant along streamlines, in keeping with the theoretical results at 
the end of 0 3. In  figure 4,  3 solutions are plotted for the basket-field case. The plateau 
area is less distinct for the relatively high value of 6, shown in figure 4 (a), though the 
contours show similar tendencies. The character of the flow is markedly different, 
however, when 6, < 6,. In  this limit, it  is possible to integrate across the magnetic 
layer and proscribe a magnetic surface stress instead of the Lorentz force. In  figure 
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FIGURE 2. Magnetic field lines: (a) 'single-loop' coil at (R,  z )  = (1.732, - 1); (b )  'basket' coils 
at ( R ,  z )  = (0.5, - 2.5),  (1, - 1.5) and (1.5, 0 ) ,  counterwound coil at ( R ,  z )  = (1.5, 1.5). 

FIGURE 3. 'Single-loop' flow solution for Re = 400, 6, = 0-05; streamlines 
on right; contours of potential vorticity on left. 

( a )  ( b )  (C) 

FIGURE 4. 'Basket' flow solutions: (a) Re = 300, 6, = 0.125; 
(b )  Re = 250, 8, + 0 ;  (c) Re = 125, 8, = 0.05. 
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0 0.5 1 .o 1.5 2-0 2.5 3.0 

FIGURE 5. Surface perturbation for 'basket'. Re = 300, 8, = 0.125, E = 1. 

4 (b) two gyres are clearly visible, each with an associated value of constant potential 
vorticity outside the complex viscous layer. This pattern persists as the Reynolds 
number is increased. In figure 4(c) 8,  - S,, and all streamlines pass through the 
boundary layer. In this intermediate case an involved structure of w / R  results, fully 
dependent on the form of a(@. 

The surface perturbations associated with the above cases are qualitatively similar, 
and figure 5,  corresponding to figure 4(a), is typical. The curvature increase at the 
bottom required by (2.14) is apparent, while comparison with figure 2 indicates a 
tendency for the fluid to move preferentially into regions of weak field. The perturba- 
tion is plotted fore = 1 to aid resolution. 

The tendency of the smaller gyre to shrink with increasing Re enables us to calculate 
the asymptotically constant value of the potential vorticity in the larger gyre. For if 
we write w / R  = $ throughout the core, then the core flow is given by the stream 
function 

Y = L/3(r2-r4)sin20. 10 (6.1) 

Substituting this velocity field in the right-hand side of ( 3 4 ,  and recalling that 
the velocity is approximately constant across the magnetic layer, we obtain 
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The left-hand side of (3.5) can be written 

Combining (6.2) and (6.3) yields 

or 
5 
6u’ 

p = - -  

since the right-hand side of (6.4) is proportional to the total lift. Thus as pointed out 
privately by Sneyd, the value of /3 is independent of the coil arrangement ! This last 
result holds only for a spherical shape, however. The ‘plateau’ value in figure 3 agrees 
quite well (within 2 yo) with the theoretical value of /3 given by (6.5). 

7. Concluding remarks 
The high-Weber-number limit has physical significance only for small drops of 

fluid (a - 1 mm). Nevertheless, it gives useful insight into the fluid behaviour in the 
three regions of the flow, which one would expect to be qualitatively similar inside a 
more generally shaped surface whenever the Lorentz force is balanced by the viscous 
forces. This work suggests that as the Reynolds number is increased a single gyre will 
emerge with an associated constant value of w/R.  This value may be calculated by 
the techniques of J 6 to give 

where U(s )  is the surface velocity, and E ,  the rate-of-strain tensor for unit potential 
vorticity throughout V. For a spherical shape, this value is zero only if the levitation 
force vanishes, but in general, it  may happen that 

We find numerically that the flow in a sphere driven by a uniform external field (for 
which (7.2) holds) consists of two symmetric gyres even for large Re. By analogy, we 
expect that if (7.2) holds for a given shape, then a two-gyre pattern will persist as 
Re+oo, but otherwise a single gyre of strength given by (7.1) will emerge. 

There is a strong indication that the asymptotic limits Re + co and 8,  + 0 are not 
interchangeable for a given configuration. When Re-tm first, the core flow becomes 
a single gyre of constant w/R, whereas if we first let Sm -+ 0 two gyres of comparable 
size with positive and negative w / R  form. However, these limits require different 
surface boundary conditions, and when W = O( 1) will not, in general, give rise to the 
same shape. 
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In  the limit &-to  it can be shown that the dynamics do not effect the surface 
shape and solutions have been obtained for W = O( 1) by a different approach. When 
Re+m for W = O(1) the condition (3.13) fails. Sneyd & Moffatt (1982) consider it 
unlikely that a laminar solution exists in this limit, but it may be that a boundary- 
layer approach similar to that of Fautrelle (1981) will lead to a solution based on the 
free-fall velocity scale. This idea is being investigated. 
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